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SUMMARY
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The destabilizing effect of linear viscous damping in a non-
conservative elastic system is investigated by studying the roots
of the characteristic equation in addition to the stability criteria
and by introducing the concept of degree of instability. A generic
relationship between critical loadings for no damping and for slight
damping as well as vanishing damping is established. It is found that
while the presence of small damping may have a destabilizing effect,
proper interpretation of the limiting process of vanishing damping
leads to the same critical load as for no damping. &ﬂ} Lo

and
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Introduction

It has been discovered by Ziegler [1] a little more than a decade
ago, that internal damping may have a destabilizing effect in noncon-
servative elastic system., He considered a double pendulum with visco~-
elastic hinges as a model of an elastic bar with int.e'rnal damping and
let a tangential force act at the free end. The critical loading
obtained in complete absence of damping was found to be considerably
higher than by including damping at the outset of the analysis and them
letting the damping coefficients approach zero (vanishing damping) in
the expression for the critical force.

This rather surprising and paradoxical finding was aseribed in
later studies by Ziegler (2], [3] to the possibility that internal
damping is inadequately represented by linear damping forces which are
linear combinations of the generalized velocities and that the hysteresis
effect should be taken into account.

The destabilizing effect of damping was further elaborated upon by
Bolotin [4] who considered a general two-degree-of-freedom system not
related to any particular mechanical model and who found additionally
that the destabilizing effect in the presence of slight and vanishing
damping is highly dependent on the relative magnitude of damping coef-
ficients in the two degrees freedon.

It is the aim of the present investigation to make an attempt at
supplying some additional insight into the destabilizing effects of
linear velocity-dependent damping in nonconservative systems, without
raising the question here as to the suitabdlity of this damping mechanism
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for a roalistic system. For this purpose the system discussed by Ziegler
is reconsidered, and not only the stability conditions are investigated
but also the roots of the characteristic equations themselves. Plots of
these roots for various ranges of loading illustrate graphically how the
paradoxical effects of vanishing damping are éenerated. Further, the
results of the mathematical stability investigations are interpreted in
physical terms by introducing the concept of degree of instability.

These concepts permit to carry out a gradual iransition from the
case of small damping to the case of vanishing damping and relate them
to the case of no damping. Finally, some remarks are made with regard
to possible behavior of an elastic bar with distributed parameters.

Thg Model

We consider a double pendulum, Fig. 1, composed of two rigid weight-
less bars of equal length {, which carry concentrated masses m = 2m,
n, = m. The generalized coordinates ®y» 9, are taken to be small, A
load P applied at the free end is assumed to be acting at an angle P
(follower force). At the hinges the restorigg moments co, + by, and
c(:pz— (pl) + bz(éz- ?pl) are induced.

The kinetic energy T, the dissipation function D, the potential

energy V, and the generalized forces QJ. and Q2 are:

T=3at? (37 * 2hys, * 8)
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Q =P (o) - o)
=0

Lagrange's equations in the form

4 (@), 0D 3L, _ o (1=1,2)
a% Tp, | 09y Doy o 1 '
are employed tp establish the linear equations of motion

;
2" o 20.
b5y + (by+0,)é, = (PL-2c)o,+ nb,- biy+ (Plole, = 0
%5 - b, = co+ nl%6.* b, + co, = 0
17 %2%17 °% 2" %227 %
which, upon stipulating solutions of the form

o, = Aot (1=1,2)

yield the characteristic equation
poﬂl‘ + p103 *.pzﬂz + pBQ + P, =0

with the coefficients

P, = 2
= B *+ 6B,

p, =7 -2F BB,
p; =B * B
p,=1

and the dimensionless quantities



Q= C(%)%b
- ( )
B, = — 1=1,2
i {(cnm)
F= L
c

In the absence of damoing (B, = B, = 0), the characteristic

equation is a biquadratic

2t + (7-2F)e? +1 =0

Sritical Loadg

From the assumed form of the time-dependence for the coordinates
9y and on the basis of the kinetic stability criterion, it is evident
that if all four roots of the characteristic equation are distinct, the
necessary and sufficient conditions for stability are that the real
roots and the real parts of the complex roots should be all negative or
zero. In case of equal roots the general solution of o5 will have terms
which contain powers of t as a factor. If the real parts of equal roots
are negative, the system will be stable (vibration with decreasing
amplitude), but if these real parts are zero or positive, stability will
not exist (vibration with increasing amplitude).

Turning our attention first to the case of an initially undamped

system, the four roots of the biquadratic equation as a function of F

are

Q3. ° 12- [*/ F<(7/2 -N2) 2 [F(1/2 +342) ]

and are plotted in Fig., 2. The projections of the root ourvss on ths



real plane (ImQ = 0), the imaginary plane (ReQ = 0) and the complex
plane (F = 0) are also shown in Fig. 2.

It is found that there will always be two roots with positive
real part if F > :21 -~2 = 2,086 = Fe’ For F = Fe there exist two pairs
of equal roots whose real parts are all zero. Thus the system is un=-
stable for F 2 Fe. For F < Fe all roots are distinc! nd pure
imaginary and thus the system is stable. A further discussion of an
initially undamped system is presented in [5].

We consider next a slightly damped system, assuming Bl = 82 = 0.01.
No simple expressions for the four roots of the quartic equation exist;
the numerical results obtained are illustrated in Fig. 3 where a per-
spective view is supplemented by three projections on the same three
planes as in Fig. 2. Two roots will have a positive real part for
F>1.464 =F a

Stability can be investigated directly without determining the
roots of the characteristic equation by applying the Routh-Hurwits
criteria {6], which require that all coefficients pj(j = 0y.0094) Of

the characteristic equation and the quantities

S = p1p2 - P°p3
X = - 2 - 2
p1p2p3 Pop3 P PL

be positive. For positive damping these stablility conditions are satis-~
fied, provided

pp=2-F+%(7+BB)]>0



v 5(B,+8B,)
s = 28| -7+ | 2(8,+68,) @ 2 I:"1‘32}} >0

2 2 4B "‘333 B, +/B 1
x = 2(8,%+7B,B,+68, ){-P+L—L——l-2—2—+ 8.8 ]} >0
2(8 -vmla +6B )
For the system to be stable F must satisfy the following three

inequalities, vhere B = 51/82, 0OEPpg™

F<i+1p3,

+8) . 1
F< 2(B+6 t 285

2(B+'73*6) T2

Since

+3) _ 7

2(B\+6; ’%*E%S%Q< 2
2

4& +333+_4 +8 B+3 +8
2 2(p+6 ; 2(p+D) < 2(p+6

2(3 +'7B+6)

for whatever § in its range, it is evident that the critical load will

be governed by the third inequality, i.e.,

F = Aol L gy,
2(p wpﬂ,)
which depends on the ratio as well as the magnitudes of the damping
coefficients.
For B; << 1, as well as in the limit of vanishing damping, F

becomes



4324330+

F. =
d z(pz+73+6)

which is highly dependent on B and is in general smaller but never
larger than F_. The ratio of F 4 Yo F, versus B is plotted in Fig. 4.

It is noted that when B = 4 + 542 = 11.07, F,/F_ reaches its maximum
value 1. The destabilizing effect is thus eliminated in this particular
case, similar to that found by Bolotin [4]. For =0, F 4/F Teaches
its minimum value 0.16; i.e.,the maximum destabilizing effect is about

84% in the present two-degree-of-freedom system.

The Case of V

The two disparate values of the critical load for no damving

(B, = 0) and vanishing damping (xa1 + 0) justify a more detailed in-

i
vestigation of the limiting process as the damping coefficients approach
zero.

Let us examine first the limiting process for the roots of the
characteristic equation. It can be shown with the aid of the theory
of equations [7] that if B, << 1 and F < 4.914 this equation‘will have

four complex roots. Let these roots be

Q= {*1 * iy,
)'l * ihz
Then one can write [6], [7]

2(71"' A].) R - Bl

Py



ey Lo + (o) 2l )2 + (r2 )% = 5

X
3
Po

where Por Py and X are as defined earlier. For vanishing damping
Y1 + )\1 =0
{ 2 2 2 2
A1 ()™ * Grtagd "Ml )™ Grpm2)7) = 0

Hence Yy == )‘1’ Y, = \2

or yl--xl:o
Thus
+ ivy v, * iy
a={ 2 or oz{ 1= 72
*ﬂz —71*172

and a substitution of these four roots into the characteristic equation
will show that they are the same as in the case of no damping.

In the case of F 2 4.914, the four roots will be all real for
small Bi' Let

as {17

v, 2V
1

2

In the limit of vanishing damping one can show similarly that either

w =

tution into the characteristic equation reveals that the roots are the

vy = 0 or W ==V and u, = v, For either alternative, substi-

same as in the case of no damvning.

| Thus the conclusion is reached that whatever F the roots of the
characteristic equation for no initial damping (Bi = 0) are identical
to those of vanishing damping (8’1- 0). This implies that the motions



of the system, for some given initial conditions, and whatever F, will
be identical in the case of no damping (Bi = 0) and vanishing damping
(B;~ 0).

We focus attention next on the loading F in the two cases and
before passing to the limit consider small damping ( By < 1). The posi=-
tive real vart of the roots of the characteristic equation in the range
Fe <F<KF P for several small values of 52 and, as an example, B1 =0
(i.e. B = 0) have been calculated and the results are displayed in
Fig. 5, where F is plotted as a function of ReQ for 9 values of BZ'
This Figure illustrates that for the larger values of Bz.F q represents the
critical load because for F > F 4 Some roots will have a non-vanishing
positive real part. A small increase of the load above F P will result
in a large increase of this real part. For small values of 82, however,
even though F P is still strictly speaking the critical load, its signi-
ficance is lessened, because a small increase of the load above Fd will
not result any longer in a large increase of ReQ. Large increase of
ReQ will now be associated with small increase of a load which is slightly
lower than Fe' For vanishing damping ReQ = O for any F < Fe‘ We thus
conclude that during the limiting process the significance of F q as a
critical load is gradually transferred to Fe’ and at the limit of vani-
shing damping (B,+ 0) F_ has to be considered as the critical load. It
is apparent now that this conclusion could only be reached by considering
the roots of the characteristic equation and not by merely applying the
stability criteria of Routh-Hurwitz. Further, the reasons for the sta-
bility criteria ylelding different critical loads for no damping and for
vanishing damping can be better understood by having considered small

damping.
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It was established in the preceding section that for vanishing
damping (B~ 0) the four roots of the characteristis equation become
identical to those of no damping (Bi = 0) while the stability criteria
alone would in general yield disparate critical loads in these two cases.

To establish a further connection betwean the mathematically derived
critical loads for no damping (B; = 0) and vanishing damping (B,~ 0) it
appears helpful to introduce into the discussion a concent which might
be called "degree of instability" and which embodies a relaxation of the
concept of instal;ility as used when applying the kinetic stability cri-
terion. According to this latter criterion a system is stable if a
suitable disturbance results in ﬁ:gi‘;:n in the vicinity of the equili-~
brium configuration, e.g., the system is unstable if a disturbance leads
to oscillations with increasing amplitude (flutter instability). For
this type of loss of stability one can state that from a practical point
of view it will certainly matter how fast the amplitudes increase.

For example, should a suitable initial disturbance be merely
doubled in a time interval which is large as compared to, say, some
reference veriod, while the duration of the system being subjected to
a nonconservative force is by comparison relatively short, the system
may be considered practically stable, while, mathematically of course,
one would have to conclude that it is unstable,

In order to weaken the kinetic stability criterion, one could pre-
scribe arbitrarily the allowable increase of the disturbance and would
then obtain for a given value of the load a critical time, not unlike
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in the case of creep buckling. As an alternative, one could introduce
another measure of the rate of amplitude increase. By analogy to de=~
caying oscillations, where the logarithmic decrement serves the purpose
of quantitatively assessing the rate of decay, we can use the same
quantity also as a measure of the rate of amplitude inocrease. Thus

A
b=logrn-'
n+l
where Ah is the amplitude of the oscillation at a certain time t and

A is the amplitude at t + T, where T is the period. In the present

n+l
problem, neglecting the terms of decaying magnitude in the general
solution of ;5 b‘_‘will generally be time-independent for flutter motions,
except when the characteristic equation has equal pure imaginary roots.
The kinetic stability criterion requires 3 > 0 (i.e. A2 An+1) .
A negative d could properly be called the logarithmic increment and in
a real system it is conceivable that » may attain a certain value bc in
a certain interval of time without the system losing its stability in
any practical sense.
For B = BI/BZ = 1 the critical load F is displayed as a function
of B = B, = B in Figs. 6 and 7. For however small but finite negative
value of d, the critical load for vanishing damping (B - 0) will always
be that for no damping (B = 0), namely F . However, the critical load
for small damping (B < 1) may be smaller than F_ but for finite 5, how-
ever small, is alvays larger than F,. For given 5 the value of (small)
damping B which is assocliated with the minimum value of the critical

load can be determined.
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For vanishing logarithmic increment (3 - 0) the function 7 (B) -
approaches a limiting curve which will contain the point Fd on the
ordinate. For & = 0 the stability region is closed, i.e., points on
the curve & = 0 in Fig. 7 are stable, including the point Pd on the
ordinate. For B = 0 it is the point F' which separates stability from
instability, but belongs itself to the instability region. This li~
miting process provides thus additional insight into the generation
of the critical load Fd'

ti Ca,

An attempt will be made now to interpret the results of the pre-
ceding sections, established with the aid of a simple two-degree-of-
freedom model, as applied to a continuous cantilever beam, which
represents possibly a more realistic system. This interoretation,
however, is not without difficulty.

We shall assume that the internal damping of the continuous can-
tilever can be represented by Voigt elements, i.e.,we use the Sezawa
beam theory (8], and consider only the two lower modes of motion.

" The ordinary differential equation governing each mode Xi, of a canti-
lever with no force at the free end, is of the form
2

. o,
L+ X5t "’12x1

0

where vy is the damping coefficlient in the stress-strain relations and
E is Young's modulus. The ratio of the damping coefficients of the
first two modes is thus
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2
A
T L (L875" .
2

This ratio for the continuous cantilever should now be compared with
that of the cantilever model and for this purpose one should uncouple
the two equations governing the model. It is known [9], however, that
vhenever a dissipation energy is accounted for, in addition to kinetic
and potential energies, such uncoupling can, in general, not be effected
and this is the difficulty alluded to above. In the system under con-
sideration uncoupling becomes possible in the special case given by

B =1 (i.e.,b = b, = b) because in this case the dissipation function
becomes proportional to the potential energy.

The transformation
= 4
"=z N

o1
2Tt

Y = {1cos 6 - t:zsin 3]

¥, = l;lsin e+ Czcos 0

leads to the uncoupled equations

21+Zi-2-(7-~/1.'i)i1+-a§5(7 -Ja)g =0

c2+l‘—i—c5(7+~/2_1)&2*4—:-£-5(7+~/'4_1)(2=o

In this representation the ratio of the damping coefficients is given by

E--%-?J%--o.w



The 5 ~and E are relatively close and one can conclude that in the
original coordinstes ¢, the ratio of the damping coefficients B has
to be taken in the vicinity of unity to correspond to the continuous

cantilever.
Further, for many structural materials the fraction of cri.foieal

damping €, = i 14 known to be of the order of 10>
i 2E °

Since (with p = 1)
b ey
= == (7 -V4)
2694 Y
and

w = f{%ﬁ; /.(7 -w4l)

the fraction of critical damping in the first mode will be

Similarly, for the second mode it will be

€, = 3.661 B

Thus B is of the same order of magnitude as €, i.e. 1073 , and damping

will have indeed a destabilizing effect, as seen from Fig. 6.

Concluding Remarks

An examination of the roots of the characteristic equation and the
introductio,n of the concept of degree of instability make it possible
to establish a generic relationship between the critical loads for no
damping and for small and vanishing damping. Routh-Hurwitz criteria
alone proved to be insufficient to determine the critical load for
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vanishing damping, which is the same as for no damping. It is small

damping, rather than vanishing damping, which is responsible for the

destabilizing effect. The strong dependence of the critical load on

the ratio of the damping coefficients, however, leaves a requirement

for further investigation, which should include other damping

mechanisn, effects of nonlinearity and different types of nonconser-

vative forces.

3.

4.

5.
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SUMMARY

The destabilizing effect of linear viscous damping in a non-
conservative elastic system is investigated by studying the roots
of the characteristic equation in addition to the stability criteria
and by introducing the concept of degree of instability. A generic
relationship between critical loadings for no damping and for slight
damping as well as vanishing damping is established. It is found that
while the presence of small damping may have a destabilizing effect,
proper interpretation of the limiting process of vanishing damping
leads to the same critical load as for no damping.




Introduction

It has been discovered by Ziegler [1] a little more than a decade
ago, that internal damping may have a destabilizing effect in noncon-
servative elastic system. He considered a double pendulum with visco~
elastic hinges as a model of an elastic bar with internal damping and
let a tangential force act at the free end. The critical loading
obtained in complete absence of damping was found to be considerably
higher than by including damping at the outset of the analysis and then
letting the damping coefficients approach zero (vanishing damping) in
the expression for the critical force.

This rather surprising and paradoxical finding was ascribed in
later studies by Ziegler {2], [3] to the possibility that internal
damping is inadequately represented by linear damping forces which are
linear combinations of the generalized velocities and that the hysteresis
effect should be taken into account.

The destabilizing effect of damping was further elaborated upon by
Bolotin [4] who considered a general two-degree-of-freedom system not
related to any particular mechanical model and who found additionally
that the destabilizing effect in the presence of slight and vanishing
damping is highly dependent on the relative magnitude of damping coef=~
ficients in the two degrees freedom.

It is the aim of the present investigation to make an attempt at
supplying some additional insight into the destabilizing effects of
linear velocity-dependent damping in nonconservative systems, without
raising the question here as to the suitabdlity of this damping mechanism



for a realistic system. For this purpose the system discussed by Ziegler
is reconsidered, and not only the stability conditions are investigated
but also the roots of the characteristic equations themselves. Plots of
these roots for various ranges of loading illustrate graphically how the
paradoxical effects of vanishing damping are generated. Further, the
results of the mathematical stability investigations are interpreted in
physical terms by introducing the concept of degree of instability.

These eoﬁcepts permit to carry out a gradual transition from the
case of small damping to the case of vanishing damping and relate them
to the case of no damping. Finally, some remarks are made with regard
to possible behavior of an elastic bar with distributed parameters.

The Model

We consider a double pendulum, Fig. 1, composed of two rigid weight-
less bars of equal length {, which carry concentrated masses » = 2m,
m, = m, The generalized coordinates ?,» 9, are taken to be small. A
load P applied at the free end is assumed to be acting at an angle 9
(follower force). At the hinges the restoring moments co, + B, and
c(:pz- ol) + by(,- @) are induced.

The kinetic energy T, the dissipation function D, the potential

energy V, and the generalized forces Q]. and Qz ares
= g2 fae 2 . o . 2
T-2D£ (BV]. +2¢1¢2*¢2)

D=2 +dn, (5% - 204, + 3))
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Q = P (o) - 0y)
,=0

Lagrange's equations in the form

Ly, &L, (LA (1=1,2)
b e % R

are employed to establish the linear equations of motion

3%+ (b*b,)d; - (PL2c)o,+ mt%,- bya* ( Plcle, = 0

2.. . 2.. . -
mbG) - bydy = copt wl G+ by, + cay =0
which, upon stipulating solutions of the form

=Ae"’t

5 (1 =1,2)

°

yield the characteristic equation

poﬂl‘ + P103 +‘p2£72 + p30 + P =0

with the coefficients

P, = 2

b = B +6B,

P2 ° 12
P; =B * B,
p,=1

=7 «-2F + BB
and the dimensionless quantities I



Q= 5(2)%b
° ( )
=—L§ 1=1,2
i 4(cm)
c

In the absence of damping (Bl =B, = 0), the characteristic

equation is a biquadratic

2wt + (12P)f +1=0

Crit a

From the assumed form ;)f the time-dependence for the coordinates
9y and on the basis of the kinetic stability criterion, it is evident
that if all four roots of the characteristic equation are distinct, the
necessary and sufficient conditions for stability are that the real
roots and the real parts of the complex roots should be all negative or
zero. In case of equal roots the general solution of o4 will have terms
vhich contain powers of t as a factor. If the real parts of equal roots
are negative, the system will be stable (vibration with decreasing
amplitude), but if these real parts are zero or positive, stability will
not exist (vibration with increasing amplitude).

Turning our attention first to the case of an initially undamped
system, the four roots of the biquadratic equation as a function of F




real plane (ImQ = 0), the imaginary plane (ReQ = 0) and the complex
plane (F = 0) are also shown in Fig. 2.

It is found that there will always be two roots with positive
real part if F > % -2 = 2,086 = Fe' For F = P‘e there exist two pairs
of equal roots whose real parts are all zero. Thus the system is un-
stable for F 2 Fe' For F < Fe all roots are distine! nd pure
imaginary and thus the system is stable. A further discussion of an
initially undamped system is presented in [5].

We consider next a slightly damped system, assuming Bl = 82 = 0.01.
No simple expressions for the four roots of the quartic equation exist;
the numerical results obtained are illustrated in Fig. 3 where a per-
spective view is supplemented by three projections on the same three
planes as in Fig. 2. Two roots will have a positive real part for
F>1.464 =F,.

Stability can be investigated directly without determining the
roots of the characteristic equation by applying the Routh-Hurwita
criteria [6], which require that all coefficients pj(j = 0ye00p4) of

the characteristic equation and the quantities
S = PPy = PPy
X = - 2 _ 2
PyPoP3 = PoP3 = P Py

be positive. For positive damping these stability conditions are satis-

fied, provided

pz=2[-l‘*%(7*8182)]>o



: 5(B,+8B.)
= ~d 2 .1
s = aasem){ - F o [ 2(8,+8,) * 2 52,1 > 0

' LB""BJBB"'LB
X = 2(B +7aa+632){ Fo| S22 +lsB]}>o

Z(Bl 4’7313 +6B )

For the system to be stable F must satisfy the following three

inequalities, vhere B = 81/82, OB

1
F<5+5 BB,
5(a+8) . 1
F <o) * 2 BiP2
2
2(p +73+6)
Since
5.5 10,2

2(B+6) 2763 <2

m'%ﬂﬂ% 2(B+1)<j{g:§‘}<2

2(3 +7p+6)

for whatever B in its range, it is evident that the critical load will

be governed by the third inequality, i.e.,

-l L 1y,
fa * 2(p%7p+6) 2 1%

which depends on the ratio as well as the magnitudes of the damping

coefficlents.

For B:l << 1, as vell as in the limit of vanishing damping, Ed

becomes



P o= A3%+33ps

4 2(p%+73+6)

which is highly dependent on B and is in general smaller but never
larger than Fe’ The ratio of F PR Fe versus P is plotted in Fig. 4.

It is noted that when § = 4 + 542 = 11,07, F,/F, reaches its maximum
value 1. The destabilizing effect is thus eliminated in this particular
case, similar to that found by Bolotin [4{]. For B =0, F d/l"e reaches
its minimun value 0.16; i.e.,the maximum destabilizing effect is about

84% in the present two-degree-of-freedom system.

The Case of V

The two disparate values of the critical load for no damping
(Bi = 0) and vanishing damping (13jL < 0) justify a more detailed in-
vestigation of the limiting process as the damping coefficients approach
zero.

Let us examine first the limiting process for the roots of the
characteristic equation. It can be shown with the aid of the theory
of equations [7] that if B, << 1 and F < 4.914 this equation will have

i
four complex roots. Let these roots be

o= {*1 + iy,
k.l * ikz
Then one can write [6], [7]

2( +k)=-£l
n'™ P,
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wrphy L) + Gepn ) 210 )2+ (rya )% = 5
p

o

where p , p, and X are as defined earlier. For vanishing damping
o’ "1

Yyt =0
{ﬁﬁ[thﬁ+(QﬂQﬁUﬁﬂﬂ%(ﬁ-ﬁﬁl=°

Hence 151 = - kl, Y, = xz

or A5 = kl =0
Thus
+ iy v, ¢ iy
Q= { 2 or Q= { 1 2
% 1k2 Y * iTé

and a substitution of these four roots into the characteristic equation

will show that they are the same as in the case of no damping.
In the case of F 2 4.914, the four roots will be all real for

small Bi' Let

Qz{ﬁ*%

v

ltv

2

In the limit of vanishing damping one can show similarly that either
w =wv = 0 or Wy = and u, = v, For either alternative, substi-
tution into the characteristic equation reveals that the roots are the
same as in the case of no damping.

Thus the conclusion is reached that whatever F the roots of the
characteristic equation for no initial damping (13i = 0) are identical

to those of vanishing damping (3‘1-' 0). This implies that the motions



of the system, for some given initial conditions, and whatever F, will
oe identical in the case of no damping (Bi = 0) and vanishing damping
(B,~ 0).

We focus attention next on the loading F in the two cases and
before passing to the limit consider small damping (Bi << 1). The posi=~
tive real vart of the roots of the characteristic equation in the range
Fe <FK Fd for several small values of B, and, as an example, B} = 0
(i.e. B = O) have been calculated and the results are displayed in
Fig. 5, where F is plotted as a function of ReQ for 9 values of BZ'
This Figure illustrates that for the larger values of BZ’Fd represents the
critical load because for F > Fd some roots will have a non-vanishing
positive real part. A small increass of the load above Fd will result
in a large increase of this real part. For small values of BZ’ hovever,
even though Fd is still strictly speaking the critical load, its signi-
ficance is lessened, because a small increase of the load above Fd will
not result any longer in a large increase of ReQ. Large increase of
ReQ will now be associated with small increase of a load which is slightly
lower than Fe. For vanishing damping ReQ = O for any F < Fe‘ We thus
conclude that during the limiting process the significance of Fd as a
critical load is gradually transferred to Fe’ and at the limit of vani-
shing damping (Bi~ 0) Fe has to be considered as the critieal load, It
is apparent now that this conclusion could only be reached by considering
the roots of the characteristic equation and not by merely applying the
stability criteria of Routh-Hurwitz. Further, the reaséns for the sta-
bility criteria ylelding different critical loads for no damping and for

vanishing damping can be better understood by having considered small

damping.
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Degree of Instability

It was established in the preceding section that for vanishing
damping (Bi~ 0) the four roots of the characteristic equation become
identical to those of no damping (B1 = 0) while the stability criteria
alone would in general yield disparate critical loads in these two cases.

To establish a further connection between the mathematically derived
critical loads for no damping (Bi = 0) and vanishing damping (Bi4 0) it
appears helpful to introduce into the discussion a conceot which might
be called "degree of instability" and which embodies a relaxation of the
concept of instaﬁility as used when applylng the kinetic stability cri-
terion. According to this latter criterion a system is stable if a
suitable disturbance results in t:m:;gn in the vicinity of the equili-
briun configuration, e.g.,the system is unstable if a disturbance leads
to oscillations with increasing amplitude {flutter instability). For
this type of loss of stability one can state that from a practical point
of view it will certainly matter hov fast the amplitudes increase.

For example, should a suitable initial disturbance be merely
doubled in a time interval which is large as compared to, say, some
reference period, while the duration of the system being subjected to
a nonconservative force is by comparison relatively short, the ﬁystem
may be considered practically stable, while, mathematically of course,
one would have to conclude that it is unstable,

In order to weaken the kinetic stability criterion, one could pre-
scribe arbitrarily the sllowable increase of the disturbance and.would
then obtain for a given value of the load a critical time, not unlike
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in the case of creep buckling. As an alternative, one could introduce
another measure of the rate of amplitude increase. By analogy to de-~
caying oscillations, where the logarithmic decrement serves the purpose
of quantitatively assessing the rate of decay, we can use the same
quantity also as a measure of the rate of amplitude inorease. Thus

d = log Ifn—
n+l
where An is the amplitude of the oscillation at a certain time t and
An+l is the amplitude at t + T, where T i3 the period. In the present
problem, neglecting the terms of decaying magnitude in the general
solution of , b will generally be time-independent for flutter motions,
except when the characteristic equation has equal pure imaginary roots.
The kinetic stability criterion requires 3 > 0 (i.e. A 2 An+1).
A negative b could properly be called the logarithmic increment and in
a real system it is conceivable that & may attain a certain value bc in
a certain interval of time without the system losing its stability in
any practical sense.
For B = QI/B2 = 1 the critical load F is displayed as a function
of B1 =B, =B in Figs, 6 and 7. For however small but finite negative
value of b, the critical load for vanishing damping (B - 0) will always
be that for no damping (B = 0), namely F . However, the critical load
for small damping (B < 1) may be smaller than F_ but for finite 5, how-
ever small, is always larger than F;. For given & the value of (small)

damping B which is associated with the minimum value of the critical

load can be determined,
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for vanishing logarithmic increment (& -+ 0) the function F (B) -
approaches a limiting curve which will contain the point Fd on the
ordinate. For & = 0 the stability region is closed, i.e.,points on
the curve » = 0 in Fig. 7 are stable, including the point Fd on the
ordinate. For B = 0 it is the point l". which separates stability from
instability, but belongs itself to the instability region. This li-
miting process provides thus additional insight into the generation

of the critical load Fd.

An attemg;.i will be made now to interpret the results of the pre=
ceding sect.igé‘a;, established with the aid of a simple two-degree-of=
freedom modol, as applied to a continuous cantilever beam, which
represents possibly a more realistic system. This interoretation,
however, is not without difficulty.

We shall assume that the internal damping of the contimuous can-
tilever can be represented by Voigt elements, i.e.,we use the Sezawa
beam theory [8], and consider only the two lower modes of motion.

The ordinary differential equation governing each mode Xi, of a canti-

lever with no force at the free end, is of the form

wvhere vy is the damping coefficient in the stress-strain relations and
E is Young's modulus, The ratio of the damping coefficients of the
first two modes is thus
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2
4
3o Sl - (L875°
B =3 (4.694) 0.0256
2

This ratio for the continuous cantilever should now be compared with
that of the cantilever model and for this purpose one should uncouple
the two equations governing the model. It is kmown [9], however, that
whenever a dissipation energy is accounted for, in addition to kinetic
and potential energies, such uncoupling can, in general, not be effected
and this is the difficulty alluded to above. In the system under con-.
sideration uncoupling becomes possible in the special case given by

B =1 (i.e.,b = b, = b) because in this case the dissipation function
becomes proportional to the potential energy.

The transformation
1
ks TV 2R |

.
R2E- T

21 = Clcos 6 - (zsin 0

¥, = (131:1 0+ F.zoos 0

leads to the uncoupled equations

.

& +Z:—£-5(7 -Jl.—i)i1+:t-5(7 -Ji)g =0

In this representation the ratio of the damping coefficients is given by

§=,,L;%=o.w.6




The B and E are relatively close and one can conclude that in the
original coordinates ®; the ratio of the damping cqefficients B has
to be taken in the vicinity of unity to correspond to the continuous
cantilever. .

Further, for many structural materials the fraction of critical
damping €; = -2?%1 is Jnown to be of the order of 10™>,

Since (with g = 1)

2w = j‘i (7 -~2)

1

sy

the fraction of critical damping in the first mode will be

Similarly, for the second mode it will be

and

€, = 3.661 B

Thus B is of the same order of magnitude as €, i.e. 1072 , and damping
will have indeed a destabilizing effect, as seen from Fig. 6.

Concluding Remarks

An exsmination of the roots of the characteristic equation and the |
introduction of the concept of degree of instability make it possible
to establish a generic relationship between the critical loads for no
danping and for smwall and vanishing damping. Routh-Hurwitz criteria
alone proved to be insufficient to determine the critical load for



BT

15

vanishing damping, which is the same as for no damping. It is small

damping, rather than vanishing damping, which is responsible for the

destabilizing effect. The strong dependence of the critical load on

the ratio of the damping coefficients, however, leaves a requirement

for further investigation, which should include other damping

mechanism, effects of nonlinearity and different types of nonconser-

vative forces.

1.

5.

9.
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CAPTIONS OF FIGURES

Two-degree-of -freedom model

Orthographic projections and the perspective of the root curves
of the characteristic equation with no damping

Orthographic projections and the perspective of the root curves
of the characteristic equation with damping

Critical load versus ratio of damping coefficients for Bi <1
Significance of the critical load F q 28 B2 increases

Critical load for various degrees of instability versus small
damping coefficients

Critical load for various degrees of instability versus large
damping coefficients.
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